Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Urban flooding is an increasing threat to cities and resident well‐being. The Federal Emergency Management Agency (FEMA) typically reports losses attributed to flooding which result from a stream overtopping its banks, discounting impacts of higher frequency, lower impact flooding that occurs when precipitation intensity exceeds the capacity of a drainage system. Despite its importance, the drivers of street flooding can often be difficult to identify, given street flooding data scarcity and the multitude of storm, built environment, and social factors involved. To address this knowledge gap, this study uses 922 street flooding reports to the city in Denver, Colorado, USA from 2000 to 2019 in coordination with rain gauge network data and Census tract information to improve understanding of spatiotemporal drivers of urban flooding. An initial threshold analysis using rainfall intensity to predict street flooding had performance close to random chance, which led us to investigate other drivers. A logistic regression describing the probability of a storm leading to a flood report showed the strongest predictors of urban flooding were, in descending order, maximum 5‐min rainfall intensity, population density, storm depth, storm duration, median tract income, and stormwater pipe density. The logistic regression also showed that rainfall intensity and population density are nearly as important in determining the likelihood of a flood report incidence. In addition, topographic wetness index values at locations of flooding reports were higher than randomly selected points. A linear regression predicting the number of reports per area identified percent impervious as the single most important predictor. Our methodologies can be used to better inform urban flood awareness, response, and mitigation and are applicable to any city with flood reports and spatial precipitation data.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Wastewater discharges and urban land cover dominate urban hydrology signals across England and WalesAbstract Urbanisation is an important driver of changes in streamflow. These changes are not uniform across catchments due to the diverse nature of water sources, storage, and pathways in urban river systems. While land cover data are typically used in urban hydrology analyses, other characteristics of urban systems (such as water management practices) are poorly quantified which means that urbanisation impacts on streamflow are often difficult to detect and quantify. Here, we assess urban impacts on streamflow dynamics for 711 catchments across England and Wales. We use the CAMELS-GB dataset, which is a large-sample hydrology dataset containing hydro-meteorological timeseries and catchment attributes characterising climate, geology, water management practices and land cover. We quantify urban impacts on a wide range of streamflow dynamics (flow magnitudes, variability, frequency, and duration) using random forest models. We demonstrate that wastewater discharges from sewage treatment plants and urban land cover dominate urban hydrology signals across England and Wales. Wastewater discharges increase low flows and reduce flashiness in urban catchments. In contrast, urban land cover increases flashiness and frequency of medium and high flow events. We highlight the need to move beyond land cover metrics and include other features of urban river systems in hydrological analyses to quantify current and future drivers of urban streamflow.more » « less
-
Abstract Beaver dam analogues (BDAs) have seen growing use as restoration structures across the western United States. This study investigates the patterns in streambed upwelling and downwelling along a 1.2‐km stream reach in Red Canyon Creek (RCC), Wyoming before and after the installation of 31 new BDAs and the upgrade of four existing BDAs in July 2021. Over 100 mini‐piezometers were used to measure upwelling and downwelling in low‐flow, summer periods as quantified by vertical hydraulic gradient (VHG). Both before and after BDA installation, the stream reach was dominated by downwelling patterns, suggesting that RCC was a net losing stream during this summer period, with and without BDAs. While there were spatial variations in VHG before BDA installation, this variation was not dependent on stream depth, water surface concavity, sediment characteristics, and position relative to meanders, suggesting that unobservable subsurface properties may be a control on VHG or that there are attributes that were not captured due to the 10‐m spacing of mini‐piezometers. After BDA installation, VHGs were primarily related to the magnitude of the elevation gradient across the BDA. VHGs were highest near the BDAs and diminished once moving more than a few metres from the BDAs. When VHGs were averaged over the full reach length, BDAs appeared to slightly enhance net stream loss, albeit we could not control for possible seasonal differences in water table gradient during the observtion period.more » « less
-
The protection of headwater streams faces increasing challenges, exemplified by limited global recognition of headwater contributions to watershed resiliency and a recent US Supreme Court decision limiting federal safeguards. Despite accounting for ~77% of global river networks, the lack of adequate headwaters protections is caused, in part, by limited information on their extent and functions—in particular, their flow regimes, which form the foundation for decision-making regarding their protection. Yet, headwater streamflow is challenging to comprehensively measure and model; it is highly variable and sensitive to changes in land use, management and climate. Modelling headwater streamflow to quantify its cumulative contributions to downstream river networks requires an integrative understanding across local hillslope and channel (that is, watershed) processes. Here we begin to address this challenge by proposing a consistent definition for headwater systems and streams, evaluating how headwater streamflow is characterized and advocating for closing gaps in headwater streamflow data collection, modelling and synthesis.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Hydrologic signatures are quantitative metrics that describe streamflow statistics and dynamics. Signatures have many applications, including assessing habitat suitability and hydrologic alteration, calibrating and evaluating hydrologic models, defining similarity between watersheds and investigating watershed processes. Increasingly, signatures are being used in large sample studies to guide flow management and modelling at continental scales. Using signatures in studies involving 1000s of watersheds brings new challenges as it becomes impractical to examine signature parameters and behaviour in each watershed. For example, we might wish to check that signatures describing flood event characteristics have correctly identified event periods, that signature values have not been biassed by data errors, or that human and natural influences on signature values have been correctly interpreted. In this commentary, we draw from our collective experience to present case studies where naïve application of signatures fails to correctly identify streamflow dynamics. These include unusual precipitation or flow regimes, data quality issues, and signature use in human-influenced watersheds. We conclude by providing guidance and recommendations on applying signatures in large sample studies.more » « less
An official website of the United States government

Full Text Available